Search results for "Organic solar cells"
showing 10 items of 15 documents
Enhanced power-conversion efficiency in organic solar cells incorporating polymeric compatibilizers
2018
Donor/acceptor heterojunction organic solar cells
2017
Organic solar cells (OSCs) have made very good improvements in recent years, reaching power conversion efficiencies above 10% [1]. This have been achieved through chemical synthesis of new organic materials with improved properties and also by new and more or less complex structures such as donor/acceptor (D/A) or bulk heterojunction OSCs. Here we report the results of initial development of OSCs based on the simple D/A heterojunction [2]. Copper phtalocyanine (CuPc) is used as donor organic material, whereas perylenetetracarboxylic dianhydride (PTCDA) and fullerene (C60) as acceptor organic materials. Moreover bathocuproine (BCP) is used as exciton blocking layer. Devices are fabricated by…
Photovoltaic characterization of organic solar cells
2018
In recent years organic solar cells (SCs) have reached power conversion efficiencies above 10% [1]. Organic photovoltaics is indeed an intensively pursued research field because it promises high efficiency and low cost SCs. Organic materials have unique and useful optoelectronic properties, their chemical synthesis can be cheap and easy, and can be deposited in the form of thin films even on flexible plastic substrates by simple deposition techniques such as spinning, ink-jet printing and high vacuum thermal evaporation. Here we report results of the photovoltaic characterization of organic SCs having the donor (D)/acceptor (A) heterojunction structure [2]. The SCs, fabricated by vacuum the…
Enhanced Efficiency of Organic Solar Cells by Thiol-capped Au-Nanoparticles
2015
In this work, we present a study on the effect of thiol-capped AuNPs of various sizesin an organic solar cell.AuNPs have been obtained by laser ablation in liquid solution[2], have been functionalized both with 2-naphthalenethiol and alkanethiol having different length. In addition to bulk heterojunction structures with optimized interpenetrating network of donors and acceptor domains, we have chosen to study planar heterojunctions (PHJs), consisting of three component thin films realized by sequential deposition of P3HT, AuNPs and PCBM from orthogonal solvents.
Improved performance in flexible organic solar cells by using copolymeric phase-separation modulators
2018
One of the main problems related to the low performance of the organic solar cells (OSCs), concerns the low mobility of the materials constituting the heterojunction. Indeed, the poor charge transport in the active layer is the principal cause of a competition between separation and recombination of the photogenerated carriers. In this regard, a major obstacle to enhance OSCs efficiency is developing strategies to optimize the exciton dissociation and, consequently, the charge collection at the electrodes. Donor and acceptor systems must be well mixed on the length scale of 5 – 20 nm (exciton diffusion length) to meet the criteria for efficient exciton dissociation. In addition, the network…
Assembling 3D Ordered Architectures in Thin Films for Organic Solar Cells
2010
Donor-acceptor “double-cable” polythiophene with tunable acceptor content
2004
The Relation between Photoconductivity Threshold and Open-Circuit Voltage in Organic Solar Cells
2022
Financial support provided by Scientific Research Project for Students and Young Researchers No. SJZ/2020/08 implemented at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².
Synthesis of oligomers and polymers doped with porphyrins for solar energy conversion
2017
The aim of this thesis was to elaborate new electron donor materials for organic solarcells. This emerging photovoltaic technology is rapidly expanding, and has yet already reached the limit for its large-scale commercialization. The low manufacturing cost of organic photovoltaic devices make then competitive face to well-established inorganic technologies. Their biggest advantage is their weight and their mechanical properties which make them flexible. They should play a key role in future as a complement to classic solar cells, with their use in specific applications. We developed polymers by using different chomophores, well-known for their interesting photophysical properties: the porph…
Donor/Acceptor Heterojunction Organic Solar Cells
2020
The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF &asymp